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Abstract

A fast Fourier transform (FFT) based computational approach integrating phase-field method (PFM) and crystal plasticity (CP)
is proposed to model recrystallization of plastically deformed polycrystals in three dimensions (3-D). CP at the grain level is em-
ployed as the constitutive description to predict the inhomogeneous distribution of strain and stress fields after plastic deformation
of a polycrystalline aggregate while the kinetics of recrystallization is obtained employing a PFM in the plastically deformed grain
structure. The elasto-viscoplastic equilibrium is guaranteed during each step of temporal phase-field evolution. Static recrystalliza-
tion involving plasticity during grain growth is employed as an example to demonstrate the proposed computational framework.
The simulated recrystallization kinetics is compared using the classical Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory. This
study also gives us a new computational pathway to explore the plasticity-driven evolution of 3D microstructures.
Published by Elsevier B.V.
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1. Introduction

Microstructure plays a crucial role in determining the properties of polycrystalline materials, which therefore
stimulated enormous efforts to tailor the microstructure of polycrystals by a combination of thermal and mechanical
processes. One widely used process is static recrystallization (SRX) by annealing of plastically deformed grain

∗ Corresponding author. Tel.: +1 814 777 6248.
E-mail address: luc28@psu.edu (L. Chen).

1 Current address: Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.
2 Current address: Department of Materials Science and Engineering, Indian Institute of Technology Hyderabad, Ordnance Factory Campus,

Yeddumailaram 502205, Andhra Pradesh, India.
3 Current address: Korea Atomic Energy Research Institute; 1045 Daedeo kdaero, Yuseong-gu, Daejeon, 305-353, Republic of Korea.

http://dx.doi.org/10.1016/j.cma.2014.12.007
0045-7825/Published by Elsevier B.V.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2014.12.007&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2014.12.007
http://www.elsevier.com/locate/cma
mailto:luc28@psu.edu
http://dx.doi.org/10.1016/j.cma.2014.12.007


830 L. Chen et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 829–848

structures [1,2]. The kinetics of recrystallization, i.e. the volume fraction of recrystallized grains as a function of
time, is often described by the Johnson–Mehl–Avrami–Kolmogorov (JMAK) model [3,4] based on the assumptions
that the nucleation rate is constant or the number of nucleation sites is fixed, constant growth velocity, and spherical
grain shapes until impingement. JMAK theory assumes a homogeneous deformed state with a constant driving force
and does not provide the microstructural details during recrystallization. To overcome these shortcomings, numerous
attempts have been made to model the recrystallization process using meso-scale computational methods such as
Monte Carlo Potts model [5–7] cellular automata model [8,9] and isogeometric method [10,11] to take into account
the evolution of grain structures during recrystallization.

On the other hand, phase-field method (PFM) has been widely applied to model various meso-scale phenomena,
e.g. solidification [12,13], solid-state transformation [14], recrystallization [15–18] and grain growth [19–21]. It can
easily handle time-dependent growth geometries and describe complex microstructure morphologies, which make it
particularly suitable for modeling microstructure evolution where morphological complexities are common. However,
most of existing PFMs incorporate the strain energy contribution to microstructure evolution in the elastic regime. Both
experimental and computational results have shown that the stresses in the context of polycrystals or microstructures
can significantly exceed the elastic limit. Therefore, a PFM including not only the driving forces originating from the
elastic fields, but also the driving forces resulting from the plastic activities is necessary for modeling microstructure
evolution.

Plastic deformation can be introduced in two different ways in the context of PFM. Since plasticity in crystals is
primarily due to the generation and motion of dislocations, one approach is to explicitly introduce mobile disloca-
tions [22–24] using continuous fields for each slip system. In this approach, it is necessary to resolve the dislocation
core size using several numerical grid spacing. In this case, the description of a realistic dislocation core size, which is
important for the short-range interaction between dislocations, would require a very refine grid size [23]. Therefore,
the spatial length scale in this approach is limited, and large scale simulations are computationally expensive. In addi-
tion, plastic deformation mechanisms other than dislocation glide (e.g. climb and/or cross-slip at high temperatures,
or twining in materials with law stacking-fault energy) are not included in this approach.

Another approach is to directly include a plastic strain field defined at the meso-scale in PFM [25]. For example,
Boussinot et al. [26] employs a decrease in the lattice misfit to account for the plastic activity. Zhou et al. [27] relates
the plastic strain to the inter-dislocation distance, i.e. the dislocation density. In particular, the crystal plasticity (CP)
theory has been rigorously formulated [28] and extensively used to obtain the micromechanical response of plastically
deforming polycrystalline aggregates.

A number of efforts have made to couple PFM and plasticity theory at the meso-scale. The first attempt to couple
PFM with an isotropic plasticity model was proposed by Guo et al. [29], who investigated the stress fields around de-
fects such as holes and cracks. Later, Ubachs et al. [30] proposed a general formalism to incorporate phase-field and
isotropic viscoplasticity with non-linear hardening for investigating tin–lead solder joints undergoing thermal cycling.
Subsequently, similar approaches have been introduced to study crystal growth [31], martensites [32], superalloys
[27,33] and diffusion controlled growth kinetics [34,35].

There have also been attempts to employ the PFM integrating plasticity to simulate the recrystallization, either in
the context of a dislocation density based plastic model [15], or in a CP framework, including both hardening and
viscosity [8,16]. For example, Takaki et al.’s model [15] assumed a homogeneous dislocation density field in each
grain. However, ignoring the intragranular heterogeneity may lead to a poor representation of recrystallization kinet-
ics and microstructure evolution. On the other hand, a successful PFM/CP coupling depends, to a large extent, on the
availability of efficient, and yet reliable, CP implementations. In this sense, while the finite element method (FEM)
has been extensively used to deal with problems involving CP (for an excellent review on CP-FEM, see [28]), the
large number of degrees of freedom required by such CP-FEM calculations limits the size of the aggregates that can
be investigated by this method.

Conceived as an alternative to CP-FEM, a formulation inspired by image-processing techniques and based on the
spectral FFT algorithm has been recently proposed to predict the micromechanical behavior of plastically deforming
heterogeneous polycrystals [36–40]. Owing to being free from any large matrix inversion, this spectral FFT formu-
lation is very computationally efficient. It is numerically demonstrated that the computational time of the CP-FEM
solver is about 25–40 times more than that of the CP-FFT counterpart when achieving the same level of fidelity [41].
Such cheap computation makes the FFT solver an excellent candidate to incorporate fine-scale microstructural infor-
mation in plastic deformation simulations.
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Fig. 1. Schematic diagram showing a typical static recrystallization process.
Source: This figure is adapted from Wikimedia Commons.

In this paper, we propose to couple our previous FFT-based PFM [19,20] and the CP-FFT model [36–40], by taking
advantage of the high efficiency in the FFT solver, to model the recrystallization of plastically deformed polycrys-
talline materials in 3-D. In this approach, the plastic strain field is first calculated with the CP-FFT approach for its
subsequent use by the FFT-based PFM for the determination of the driving forces for recrystallization. The use of
the FFT algorithm in both PFM and CP not only guarantees their seamless integration from a numerical perspective,
but also helps us to significantly enhance the computational efficiency. The elasto-viscoplastic equilibrium is solved
during each step of temporal phase-field evolution. The proposed computational framework is applicable to other
plasticity-driven phase-field evolution processes.

The plan of the paper is as follows: in Section 2 we summarize the essential aspects of the FFT-based CP model
and present how elastic equilibrium for each step of phase-field evolution is solved. Next, Section 3 describes the
formulation of the PFM for static recrystallization of plastically deformed polycrystals, paying special attention to
the determination of the plastic driving forces. Examples of phase-field simulation of recrystallization process are
described in Section 4, where a simply case with only one deformed crystal is designed to validate the recrystallization
kinetics of the proposed model, followed by a realistic case with multiple deformed grains. Finally, we draw our
conclusions in Section 5.

2. FFT-based crystal plasticity (CP-FFT) model

The main purpose of this study is to integrate a FFT-based micro-elastic PFM with a CP-FFT model for simulating
the phase-field evolution, using static recrystallization of plastically deformed polycrystals as an example. The
procedure of static recrystallization is schematically illustrated in Fig. 1: (1) a sufficiently high level of stress is
applied to a polycrystalline material, producing plastic deformation. At single crystal level, plastic deformation results
in energy storage in each grain in the form of dislocations; (2) the applied stress is then released, followed by heating
of the deformed polycrystal to an elevated temperature; and (3) the plastic energy drives the nucleation and growth of
recrystallized grains, restoring the heavily deformed grains to a low dislocation density state.

The first step of the static recrystallization model is to compute the plastic deformation of polycrystals and the
corresponding plastically stored energy distribution. In the proposed method, the CP-FFT model with full-field for-
mulations is employed for this purpose.

2.1. Starting microstructure

The initial polycrystalline structures, as illustrated in Fig. 2(a), can be easily generated from our real-space phase-
field grain growth simulations [20], in which the grain size can be controlled. Alternatively, an experimentally de-
termined image of the microstructure of interest can be directly utilized as the input to the present model [39]. It is
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Fig. 2. Starting 3-D microstructure used in the simulations.

worth noting that because of the continuous variation of order parameters, grain boundaries in the phase-field are dif-
fuse [14], whereas the counterparts in CP-FFT model are infinitely sharp, as shown in Fig. 2(b). A simple but effective
numerical means to achieve the transformation between microstructures with diffuse and sharp grain boundaries will
be detailed in Section 3.2.1.

2.2. Viscoplastic FFT-based formulation

The FFT-based formulation for viscoplastic polycrystals has been described in detail in previous papers [36–40].
Therefore, here we only provide the essential aspects of the method. The interested readers are referred to previous
publications for further details.

The micromechanical fields that develop during plastic deformation in polycrystalline aggregates can be obtained
as an extension of the spectral method originally proposed by [42] for linear and non-linear composites. The FFT-
based formulation provides an exact solution of the governing equations in a periodic unit cell, adjusting iteratively a
strain-rate field, associated with a kinematically-admissible velocity field, which minimizes the average of local work-
rate, under the compatibility and equilibrium constraints. The method is based on the fact that the local mechanical
response of a periodic heterogeneous medium can be calculated as a convolution integral between the Green func-
tion of a linear reference homogeneous medium and a polarization field, proportional to the actual heterogeneity
and micromechanical fields. Since such type of integrals reduces to a simple product in Fourier space, FFT can be
used to transform the polarization field into Fourier space and, in turn, to get the micromechanical fields by inverse-
transforming that product back to Cartesian space. Given that the actual polarization field depends on a priori un-
known fields, an iterative scheme is necessary to converge towards a compatible strain-rate field and an equilibrated
stress field. However, the requirement of periodic boundary conditions in Fourier space makes the FFT-based for-
mulation less general than the CP-FEM formulation. In order to ensure the computational efficiency, the small strain
formulations are utilized to describe the constitutive relations and governing equations, without the multiplicative
decomposition of the deformation gradient into elastic and plastic parts.

The periodic unit cell representing the polycrystal is discretized by means of a regular grid

xd. A corresponding

grid of the same dimensions,

ξd


, is used in Fourier space. Velocities and tractions along the boundary of the unit cell

need to be determined. An average velocity gradient Vi, j is imposed to the unit cell, which gives an average strain-rate
Ėi j =

1
2


Vi, j + V j,i


. The local strain-rate field is a function of the local velocity field, i.e. ε̇i j (vk (x)), and can be

split into average and fluctuation terms, ε̇i j (vk (x)) = Ėi j + ˜̇εi j (ṽk (x)), where vi (x) = Ėi j x j + ṽi (x).
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The constitutive equation that relates the local deviatoric stress σ ′ (x) and the local strain-rate ε̇ (x) at point x is
obtained by adding the contribution of the S slip systems active at single crystal level:

ε̇ (x) =

S
s=1

ms (x) γ̇ s (x) = γ̇o

S
s=1

ms (x)


ms (x) :σ ′ (x)

τ s (x)

n

× sgn

ms (x) :σ ′ (x)


(1)

where ms is the Schmid tensor of slip system (s) defined as ms
= (ns

⊗ bs
+ bs

⊗ ns) /2 with ns and bs being the
normal and Burgers vectors of system (s); γ̇ s and τ s are, respectively, the shear-rate and critical stress of slip system
(s); n is the stress exponent, and γ̇o is a reference shear-rate. Note that Eq. (1) amounts to neglect elastic strains, which
are assumed to be very small compared to plastic strains, at sufficiently large deformations.

The Cauchy stress field can be written as:

σ (x) = Lo
: ε̇(x) + ϕ(x) − p (x) I (2)

where p (x) is the hydrostatic pressure field, Lo is the stiffness of a linear reference medium, and ϕ(x) is the
polarization field, given by:

ϕ(x) = σ ′ (x) − Lo
: ε̇(x). (3)

Combining Eq. (2) with the equilibrium (σi j, j (x) = 0), and incompressibility conditions:Lo
i jklvk,l j (x) + ϕi j, j (x) − p,i (x) = 0

vk,k (x) = 0
(4)

where we have used the relation: ε̇i j (x) =
1
2


vi, j (x) + v j,i (x)


. The system of differential equations (4), with peri-

odic boundary conditions across the unit cell, can be solved by means of the Green function method. If Gkm and Hm
are the periodic Green functions associated with the velocity and hydrostatic pressure fields, the solutions of system
(4) are convolution integrals between those Green functions and the polarization field. The velocity gradient, after
some manipulation, is given by:

ṽi, j (x) =


R3

Gik, jl

x − x′


ϕkl


x′


dx′. (5)

Convolution integrals in direct space are simply products in Fourier space. Hence:

ˆ̃
ε̇i j (ξ) = Γ̂ sym

i jkl (ξ) ϕ̂kl (ξ) (6)

where the symbol “∧” indicates the Fourier transform and Γ sym
i jkl = sym


Gik, jl


. The tensor Γ̂ sym

i jkl (ξ) is only function

of Lo and can be readily obtained for every point belonging to

ξd


(for details, see [39]). The so-called FFT-based

basic scheme [42] consists of: (1) inverse-transforming Eq. (6), to obtain a new guess for the strain-rate field, (2) with
the latter, solving Eq. (1) to obtain the new guess for the stress field; (3) replacing those new estimations of the mi-
cromechanical fields in Eq. (3) to obtain the new polarization field, and so on and so forth, until reaching convergence.

Because of the strong mechanical contrast associated with the viscoplastic constitutive relation (Eq. (1)), the actual
iterative procedure used in the simulations presented here employs the augmented Lagrangians algorithm [43,44], con-
sisting of updating equilibrated stress and compatible strain-rate fields, along with two auxiliary stress and strain-rate
fields related to each other by the constitutive relation (for details, see [39]). Upon convergence, the micromechanical
fields and microstructure are updated incrementally, using an explicit scheme. For example, the strain-rate field calcu-
lated at time t is assumed to be constant during a time interval [t, t + 1t] and the total macroscopic and local strains
are then calculated as: E (t+1t)

i j = E (t)
i j + Ėi j × 1t and ε

(t+1t)
i j (x) = ε

(t)
i j (x) + ε̇i j (x) × 1t , respectively. For further

use, let us call:

ε p (x) = ε(tF) (x) and ε
p
vM (x) =


2
3
ε p (x) :ε p (x) (7)

where tF is the final time, i.e. at which the application of plastic deformation onto the polycrystal is completed.
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The local crystallographic orientations are updated according to the following local lattice rotation-rate:

ω (x) =


�̇ + ˜̇ω (x) − ω̇p (x)


× 1t (8)

where: Ω̇i j =
1
2


Vi, j − V j,i


is the antisymmetric part of the macroscopic velocity gradient; ω̇p (x) is the plastic spin

obtained as:

ω̇p (x) =

S
s=1

αs (x) γ̇ s (x) (9)

with αs (x) =
1
2 (ns (x) ⊗ bs (x) − bs (x) ⊗ ns (x)) being the antisymmetric Schmid tensor associated with slip

system s; and ˜̇ω (x) is the local fluctuation in rigid-body rotation-rate, obtained by inverse-transforming the converged
anti-symmetric field:

ˆ̃
ω̇


xd


= f f t−1

0̂

antisym

ξd


:ϕ̂

ξd


. (10)

Finally, the field of critical resolved shear stresses τ s (x) is also updated after each deformation increment. Adopting
a simple linear hardening, the hardening rate for all systems is given by:

τ̇ s (x) = H Γ̇ (x) (11)

where H is the hardening coefficient and Γ̇ (x) =
S

s=1 |γ̇ s (x)| is the total shear-rate.

2.3. Recrystallization nucleation

In general, there are two main recrystallization nucleation mechanisms depending on the dislocation behaviors. One
is based on the coarsening of subgrains which originates from the dislocation networks in the dynamic recovery of
plastically deformed microstructures, corresponding to high stacking-fault energy materials (e.g. Aluminum). Another
mechanism is strain induced grain boundary migration (SIBM) on a more phenomenological basis, corresponding to
low stacking-fault energy materials (e.g. Copper). SIBM involves the bulging of part of a pre-existing grain boundary,
leaving a dislocation-free region behind the migrating boundary [2].

The SIBM nucleation mechanism is chosen in this study based on site-saturated nucleation conditions for simplic-
ity. Specifically, the model assumes that nucleation occurs only at locations with a von Mises plastic strain ε

p
vM (x)

exceeding a critical value ε
p
crit (x):

ε
p
vM (x) > ε

p
crit (x) . (12)

It is worth noting that such plastic strain-based nucleation criterion is different from the dislocation density-based
nucleation criterion, since the high plastic sites within grains possibly do not have high dislocation density.

These recrystallization nuclei are introduced as small grains into the computational domain. At these locations, the
nuclei are created with random orientation attributes, whereas the local plastic strain is reset to zero. In addition to the
above criteria, we set the distance between two neighboring nuclei to be more than 5 grids, because the PFM uses the
diffusive interface region with a finite width. Next, if the conditions are appropriate, i.e. if its boundaries have enough
mobility and sufficiently large driving force to move, a recrystallized nucleus may sweep a deformed neighbor grain,
advancing in this way the recrystallization process.

2.4. FFT-based equilibrium after each phase-field temporal step

The second step of the proposed model is to simulate the growth of recrystallized grains. An important condition
for the simulation of this process is the fulfillment of stress equilibrium. Due to the annealing of plastic deformation
in the recrystallized regions, the elastic strains have been found to become comparable with the corresponding plastic
strains. Consequently, in order to fulfill static mechanical equilibrium during the PFM simulation, the plastic strain
field ε p (x), whose initial value for the PFM is given by Eq. (7) and whose evolution is determined by the nucleation
and growth of recrystallized regions with ε p (x) =


g H(ηg(x))ε

p
g (x) (detailed in Section 3.2.2), is considered as
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an eigenstrain field. The FFT-based solution of this problem is then solved by the formulations for stress equilibrium
proposed by [19,45,46].

In the case of the presence of an eigenstrain field ε
p
i j (x), the total strain field is:

ε(x) = εe(x) + ε p(x). (13)

The elastic strain field εe(x) is linearly related to stress:

σ (x) = C(x) : εe(x) = C(x) :

ε(x) − ε p(x)


. (14)

Similarly to Eq. (2) in the viscoplastic case, the use of a homogeneous elastic stiffness Co allows us to rewrite
Eq. (14) as:

σ (x) = Co
: ε(x) + ϕ(x). (15)

In this case, the polarization field is given by:

ϕ(x) = σ (x) − Co
: ε(x) =


C(x) − Co

: (E + ε̃(x)) − C(x) : ε p(x). (16)

Enforcing equilibrium: σi j, j (x) = 0, we obtain:

Co
i jkl uk,l j (x) + ϕi j, j (x) = 0 (17)

where uk(x) is the displacement field and εi j (x) =
1
2


ui, j (x) + u j,i (x)


. The Green’s function method is again used

to solve this system of differential equations. If Gkm(x), the Green’s function associated with the displacement field,
can be determined, the solution of Eq. (17) is given by:

uk(x) =


R3

Gki, j (x − x′)ϕi j (x′)dx′. (18)

Taking gradient of Eq. (18) and expressing the resulting convolution integral in Fourier space gives:

ˆ̃ui, j (ξ) = Γ̂i jkl (ξ) ϕ̂kl (ξ) (19)

where Γi jkl = Gik, jl . These operators are calculated in Fourier space as: Ĝi j (ξ) = A−1
i j (ξ) where Ai j (ξ) = ξ jξl

Co
i jkl , and Γ̂i jkl (ξ) = −ξ jξl Ĝi j (ξ). Anti-transforming and symmetrizing Eq. (19), a new guess for the total strain

fluctuation field ε̃(x) is obtained. If the macroscopic strain Ei j is known, Eq. (16) gives a new guess of the polarization
field, and so on and so forth, until the input total strain field coincides with the output field within a certain tolerance.

While the above algorithm corresponds to a macroscopic strain applied to the unit cell, static recrystallization
problems typically correspond to macroscopic stress-free states. In this case, the macroscopic strain field should also
be adjusted iteratively after each iteration (i) according to [44]:

E(i+1)
=


ε(i) (x)


− Co−1

:


σ (i) (x)


(20)

where ⟨·⟩ indicates average over the entire Fourier grid.

3. Phase-field method

In the phase-field method, each point of a polycrystalline microstructure is described by continuous and non-
conservative order parameters ηg(x, t) (g = 1..G). Within the interior of each grain only one of the order parameters
adopts the value of unity, and the rest of the order parameters have the value of zero. Thus, each order parameter
represents the unique crystallographic orientation of a grain. The order parameter values continuously change from 1
to 0 across the grain boundary [14].

The PFM and the FFT-based CP model is coupled to model the microstructure evolution during static recrystalliza-
tion, as shown in Fig. 1. During this process, the deformed and recrystallized grains coexist at equilibrium. In order to
differentiate between these two types of grains, a new set of non-conservative order parameters φr (x, t) (r = 1..R) are
introduced to account for the recrystallized grains, in addition to ηg(x, t) (g = 1..G) describing the deformed grains.
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The main ingredient of the PFM is a mesoscopic free-energy functional F relating the order parameters to the total
free energy. It is usually decomposed into several contributions: chemical free energy (including a gradient term) and
elastic energy Fel, detailed in the next subsections. In the present case, the free energy functional also contain a plastic
contribution Fvp. Hence:

F = Fch(ηg, φr ) + Fel(ηg, φr , εel) + Fvp(ηg, ε p) + F r
ch(ηg, φr ) + F r

el(ηg, φr , εel) (21)

where Fch is the chemical free energy. The superscript r denotes the energy contributions from the recrystallized
grains, while the terms without supra-index indicate their counterparts from deformed grains. Note that due to the
assumption of dislocation-free recrystallized grains, there is no plastic energy contribution from these grains.

3.1. Chemical free energy

Based on our previous phase-field grain growth model [14,19,20], the chemical free energy of a polycrystalline
microstructure is expressed as:

Fch =


V


f0(ηg, φr ) +

G
g=1

κ

2
(∇ηg(x, t)2)


dV (22)

F r
ch =


V


f r
0 (ηg, φr ) +

R
r=1

κ

2
(∇φr (x, t)2)


dV (23)

where κ is a positive gradient coefficient associated with the gradients, and f0(ηq , φr ) and f r
0 (ηq , φr ) are the local

free energy densities of deformed and recrystallization grains, respectively, which are defined as:

f0(ηg, φr ) = −
α

2

G
g=1

η2
q(x, t) +

β

4


G

g=1

η2
g(x, t)

2

+


γ −

β

2

 G
g=1

G
s>g

η2
g(x, t)η2

s (x, t)


+ γ

G
g=1

R
r=1

η2
g(x, t)φ2

r (x, t) (24)

f r
0 (ηg, φr ) = −

α

2

R
r=1

φ2
r (x, t) +

β

4


R

r=1

φ2
r (x, t)

2

+


γ −

β

2

 R
r=1

R
s>r

φ2
r (x, t)φ2

s (x, t)


+ γ

G
g=1

R
r=1

η2
g(x, t)φ2

r (x, t) (25)

where α, β and γ are constants, with α = β > 0 and γ > β/2.
The local free energy density has 2(G + R) degenerate minima located at (η1, η2, . . . , ηG , φ1, φ2, . . . , φR) =

(±1, 0, . . . , 0), (0, ±1, . . . , 0), . . . , (0, 0, . . . ,±1). The minima associated with ηg or φr = −1 are eliminated by
setting the value of each order parameter equal to its absolute value during the initial stages of the simulation. This is
required to prevent the variation of ηg or φr from +1 to −1 or vice-versa across a grain boundary which may lead to
different grain boundary energy and mobility. To simulate the ideal case of grain growth we consider grain boundaries
across which ηg or φr smoothly varies from 1 to 0 or vice versa.

3.2. Plastic energy

3.2.1. PFM/CP-FFT microstructure mapping
Owing to the continuous variation of properties, grain boundaries in the PFM are diffuse, rather than infinitely

sharp, as in the CP-FFT model. In such case, a number of non-zero order parameters describe each material point in
the PFM diffuse microstructure, as opposed to the CP-FFT sharp microstructure in which each material point corre-
sponds to only one grain. In order to integrate both models, the following algorithm is designed to transform between
the two microstructures:
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(1) The PFM diffuse microstructure is transformed to a CP-FFT sharp one, by finding the dominant or primary order
parameter (i.e. that with the maximum value) for each point in the diffuse microstructure, to be denoted ηprim(x):

ηprim(x) = max [η1(x), η2(x), . . . , ηG(x)] (26)

and treating the grain that ηprim(x) represents, as the one associated with the specific point x in the CP-FFT sharp
microstructure.

(2) The plastic strains calculated with the CP-FFT model for the sharp microstructure are then employed to construct
the plastic strain field to be mapped onto the PFM diffuse microstructure. Similar to the classic variable description
in PFM, the plastic strain field ε

p
PFM(x) at point x is given in terms of its set of order parameters ηg(x) (g = 1..G)

as:

ε
p
PFM(x) =


g

H(ηg(x))ε
p
g,PFM(x) (27)

where ε
p
g,PFM(x) is the plastic strain associated to g-th order parameter at point x. An issue that needs to be

addressed is that the plastic strains ε
p
g,PFM(x) hold a number of values for a number of order parameters for one

specific point x in PFM, while the plastic strain ε
p
FFT(x) calculated with the CP-FFT model corresponds to the

single grain associated with x. Thus, in order to evaluate ε
p
g,PFM(x), we first calculate the averages ε

p
g,FFT =

ε
p
FFT (x)


g ∀g of the plastic strain field over all Fourier points belonging to each grain g in the entire CP-FFT

computational domain. Next, since each point of the PFM diffuse microstructure is described by two types of order
parameters: one primary and G −1 secondary order parameters, we compute ε

p
g,PFM(x) differently for both types:

(a) For the primary order parameter: ε
p
g,PFM(x) = ε

p
FFT(x), calculated by CP-FFT model for this specific point;

(b) For the secondary order parameters, ε
p
g,PFM(x) = ε

p
g,FFT , as defined above.

Additionally, H(ηg) in Eq. (27) is the interpolation function of grain parameters, and is defined as:

H(ηg) = −2η3
g + 3η2

g (28)

which exhibits the following properties: (i) H(ηg = 0) = 0 and H(ηg = 1) = 1; (ii) ∂ H/∂ηg|ηg = 0, 1 = 0,
thereby representing the artificial change in the equilibrium grain order parameter values within the bulk of each
grain.

Similarly, the von Mises strain εvM (x) of each material point (for later use) in PFM can be written as:

εvM (x) =


2
3
ε

p
i j (x) : ε

p
i j (x) =


g

(−2η3
g + 3η2

g)εg,vM (x) (29)

where the sub-index PFM is ignored for the purpose of simplification, and so are the rest subsections.

3.2.2. Plastic energy
The plastic energy in the framework of crystal plasticity is described classically with two variables related to the

slip systems: the shear strain γ s(x, t) and the critical resolved shear stress τ s(x, t) of slip system. They enter the
accumulation of plastic energy from all the time steps in the CP-FFT calculation as follows:

Fvp =


V

fvp (x)dV =


V


1Wvp(x, t)dt


dV (30)

where fvp is the plastic energy density that is expressed by the integration of the increment of plastic energy density
1Wvp, which is given by:

1Wvp(x, t) =

Ns
s=1

τ s(x, t)1γ s(x, t) =

Ns
s=1


τ s

0 (x, t) + 1τ s(x, t)

1γ s(x, t)

=

Ns
s=1


τ s

o (x, 0) + H
Ns

s=1

γ s(x, t)


1γ s(x, t)
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=

constat  
τ s

o (x, 0)

Ns
s=1

1γ s(x, t) + H


Ns

s=1

1γ s(x, t)


×


Ns

s=1

γ s(x, t)


= τ s

o (x, 0)M(x)1εvM (x, t) + H M2(x) [1εvM (x, t)] × [εvM (x, t)] (31)

in which the τ s
o is the initial critical resolved shear stress (i.e. no strain hardening), and thus is a constant. Also, M(x)

denotes the Taylor factor, according to theory [28], that is defined as:

M(x) = 1γ s(x, t)/1εvM (x, t). (32)

Substituting Eq. (31) into Eq. (30) yields:

fvp(x) =


1Wvp(x, t)dt

=


τ s

o (x, 0)M(x)1εvM (x, t) + H M2(x) [1εvM (x, t)] × [εvM (x, t)] dt

= τ s
o (x, 0)M(x)


1εvM (x, t)dt + 0.5H M2(x)


1εvM (x, t)dt

2

= τ s
o (x, 0)M(x)εvM (x) + 0.5H M2(x) [εvM (x)]2 . (33)

Substituting Eq. (29) into Eq. (33), the plastic energy takes the form of:

fvp(x) = τ s
o (0, x)M(x)


g

(−2η3
g + 3η2

g)εg,vM (x, t) + 0.5H M2(x)


g

(−2η3
g + 3η2

g)εg,vM (x, t)

2

. (34)

3.3. Elastic energy

The elastic energy of a polycrystalline material is defined as follows:

Fel =


V

feldV =


V

1
2

Ci jkl(x)εe
i j (x)εe

kl(x)dV

F r
el =


V

f r
eldV =


V

1
2

Cr
i jkl(x)εe

i j (x)εe
kl(x)dV

(35)

where εe
i j (x) denotes the local elastic strain tensor. For one specific material point, Ci jkl(x) and Cr

i jkl(x) denotes
the elastic stiffness tensor contributed by deformed and recrystallization grains respectively, fel and f r

el represent the
corresponding elastic energy density. Since the grains are rotated with respect to a fixed coordinate system, the elastic
stiffness tensor for each grain is obtained by transforming the tensor with respect to the fixed coordinate system. Let
Ci jkl represent the stiffness tensor for a single grain in a fixed reference frame. Then, the position-dependent elastic
stiffness tensor for the entire polycrystal in terms of the order parameter fields is given by:

Ci jkl(x) =


g

η2
g(x)ag

ipag
jqag

kr ag
lsC pqrs

Cr
i jkl(x) =


g

φ2
g(x)ag

ipag
jqag

kr ag
lsC pqrs

(36)

where a is the transformation matrix representing the rotation of the coordinate system defined on a given grain ‘g’
with respect to the fixed reference frame. C pqrs denotes the stiffness tensor of the reference medium. ai j is expressed
in terms of the symmetric Euler angles {Ψ , Θ, φ} (Kocks convention) (in three dimensions):

a =

− sin φ sin Ψ − cos φ cos Ψ cos Θ sin φ cos Ψ − cos φ sin Ψ cos Θ cos φ sin Θ
cos φ sin Ψ − sin φ cos Ψ cos Θ − cos φ cos Ψ − sin φ sin Ψ cos Θ sin φ sin Θ

cos Ψ sin Θ sin Ψ sin Θ cos Θ

 . (37)
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3.4. Kinetics of recrystallization

The time evolution of the order parameters is governed by kinetic equations relating time derivatives to the cor-
responding driving forces, defined as the functional derivatives (noted δF /δ) of F with respect to the fields. The
Allen–Cahn equations are solved for the non-conserved order parameters of both the deformed grain and the recrys-
tallized grain:

∂ηq(x, t)

∂t
= −L

δF
δηq(x, t)

= −L(µch + µel + µvp) (38)

∂φr (x, t)

∂t
= −L

δF
δφr (x, t)

= −L(µr
ch + µr

el) (39)

where L is the kinetic rate coefficient relating to the grain boundary mobility M0 and grain boundary energy σgb, and
can be described as:

L = M0 × σgb/κ. (40)

Also, the curvature driven forces for migration of grain boundaries µch = ∂ fch/∂ηq and µr
ch = ∂ f r

ch/δφr ,
respectively corresponding to the deformed grain and the recrystallized grain are given as:

µch(x) =
∂ f0

∂ηg
− κ∇

2ηg

= −αηg(x, t) + βη3
g(x, t) + 2γ ηg(x, t)


s≠g

η2
s (x, t) + 2γ ηg(x, t)


r

φ2
r (x, t) − κ∇

2ηg(x, t) (41)

µr
ch(x) =

∂ f r
0

∂φr
− κ∇

2φr

= −αφr (x, t) + βφ3
r (x, t) + 2γφr (x, t)


s≠r

φ2
s (x, t) + 2γφr (x, t)


g

η2
g(x, t) − κ∇

2φr (x, t). (42)

The elastic driven force µel (similar operation on µr
el) is obtained with the following derivation:

µel(x) =
∂ fel

∂ηg
=

∂ fel

∂η2
g

·
∂η2

g

∂ηg
= 2ηg

∂ fel

∂η2
g
. (43)

Thus, the elastic driving forces µel and µr
el are given by:

µel(x) = ηg(x)ag
ipag

jqag
kr ag

lsC pqrsε
e
i j (x)εe

kl(x) − 3ηg(x)(1 − ηg(x))Ci jkl(x)εe
i j (x)ε

p
g,kl(x) (44)

µr
el(x) = φg(x)ag

ipag
jqag

kr ag
lsC pqrsε

e
i j (x)εe

kl(x) (45)

where ηg(x) or φg(x) = 1 within grain ‘g’ and zero elsewhere. Similarly, the plastic driven force µvp is obtained as:

µvp(x) =
∂ fvp

∂ηg
= τ s

o (0, x)M(x)


g
6(−η2

g + ηg)εg,vM (x, t)

+ 0.5H M2(x)


g
(24η5

g − 48η4
g + 36η3

g)

εg,vM (x, t)

2
. (46)

3.5. Computational procedure

The detailed procedure to simulate the static recrystallization process of deformed polycrystalline systems using
the present FFT-based phase-field model is given in the form of flowchart as illustrated in Fig. 3.

4. Numerical examples

In what follows we present two applications to assess the performance of the proposed FFT-based PFM taking
the static recrystallization as an example. First, a simple case of a deformed single crystal is designed to validate the
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Fig. 3. Flow chart of the proposed FFT-based phase-field model to simulate static recrystallization.

recrystallization kinetics of the proposed model, by comparing the results obtained using the theoretical JMAK model.
Next, we apply the proposed model to a more realistic case of a polycrystal with multiple deformed grains. Finally,
we discuss the effect of applied strain on the recrystallization kinetics as well as the recrystallized grain size.

4.1. Validation of recrystallization kinetics

Our first verification test concerns a simple case with only one deformed single crystal (G = 1), thus producing
a uniform distribution of plastic strain before recrystallization. An appealing feature of this problem is that it is
amenable to an analytical solution of its recrystallization kinetics that comes from the JMAK equation [3,4]. In the
JMAK model, random nucleation is assumed to occur either by site saturation or at constant nucleation rate. Here the
case of site saturation is considered. Accordingly, randomly distributed nuclei are assumed. Five hundred nuclei are
instantaneously seeded in the simulation domain. A uniform plastic driving force of 0.4 is assumed and the elastic
driving force is neglected.

Computer simulations are performed on a cubic lattice with three system sizes by successively refinement, i.e. 64 ×

64 × 64, 96 × 96 × 96 and 128 × 128 × 128 grid points. R = 500 order parameters (recrystallized grains) are em-
ployed in this study. The values of the coefficients appearing in Eqs. (24) and (25) are: α = β = γ = 1 and κ = 1.
L = 1 is used in Eqs. (38) and (39). The lattice size 1x is set to 2.0, and a time step 1t of 0.05, 0.1, 0.3 are employed
in the simulations. Periodic boundary conditions are employed.

Fig. 4 shows the 3-D microstructure evolution upon recrystallization under the JMAK assumptions with system
size of 96 × 96 × 96. The new grains grew spherically before they impinge on each other, which is consistent with the
JMAK assumption of isotropic growth. At the end of the process, the new grains completely fill the domain and form
polyhedral shapes. Fig. 5 shows the recrystallization kinetics plot obtained from our 3-D phase-field simulations. It is
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Fig. 4. Validation of recrystallization kinetics: 3-D microstructure evolution in the case of homogeneous nucleation and driving forces satisfying
the JMAK assumption.

clearly observed that the exponent n of the present method exhibits excellent agreement with the theoretical JMAK
value of 3, regardless of the system size considered, in spite of the imperfect linearity of the plotted lines. The JMAK
exponent n is defined by the following equations [3,4]:

X = 1 − exp(−K tn)

⇒ ln(− ln(1 − X)) = ln(K ) + n ln(t)
(47)

which yields a straight line with gradient n and intercept ln(K ) in a n(− ln(1− X)) vs. ln(t) plot, where X corresponds
to the recrystallization volume fraction.

The sensitivity analysis, carried out here to demonstrate the stability of the method, shows that the exponent n
converges to the corresponding JMAK analytical solution with decreasing the time step 1t as illustrated in Fig. 6.

4.2. Polycrystal recrystallization

Next, we consider a more interesting case of a polycrystal with multiple deformed grains, with a starting microstruc-
ture consisting of 225 grains (G = 225) generated by a phase-field grain growth simulation. [20], as shown in Fig. 2(a).

Simulations were performed on a cubic lattice with 64 × 64 × 64 grid points. As before, R = 500 order parameters
(recrystallized grains) are employed in this study. 1x is the lattice grid size, chosen to be 1 µm. The gradient energy
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Fig. 5. JMAK plots of the simulated recrystallization kinetics.

Fig. 6. Effect of the time step on the recrystallization kinetics.

coefficient κ associated with the grain order parameters is assumed to be 4.0 × 10−6 J m−1. For the local free energy
density described in Eqs. (24) and (25), we adopted α = β = γ = 1, and, according to data available in the litera-
ture [47], a barrier height hb = 1.14 × 106 J m−3. The equilibrium grain boundary energy σgb is 0.82 J m−2 and the
equilibrium grain boundary width lgb =

√
2κ/hb is 2.6 µm. These values are reasonable for generic high-angle grain

boundaries. The kinetic coefficient L for the Allen–Cahn equation (Eq. (24)) is chosen to be 0.36 × 10−2 m3 J−1 s−1,
and the intrinsic mobility M0 of the grain boundary motion is taken as 1.76 × 10−8 m4 J−1 s−1 using the relation in
Eq. (40). The time step 1t for integration is taken as 0.56 × 10−4 s. The kinetic equations are solved in their dimen-
sionless forms. The parameters are normalized by 1x∗

= 1x/ l, 1t∗ = L × E × 1t , h∗

b = hb/E , k∗
= k/E · l2 and

M∗

0 = M0/L · l2, where E is the characteristic energy (taken to be 106 J m−3) and l is the characteristic length (taken
to be 2 µm). All the simulations are conducted using periodic boundary conditions as before. The physical parameters
and their normalized values are summarized in Table 1.

4.2.1. Plastic deformation from FFT viscoplastic model
In order to investigate microstructure evolution coupled to viscoplasticity during recrystallization, the first step is

to predict the plastic strain field of the deformed microstructure using the CP-FFT model. The boundary conditions
correspond to uniaxial tension along x3 (see Fig. 2), with an applied strain rate component along the tensile axis
Ė33 = 1 s−1. The CP-FFT simulation is carried out in 100 steps of 0.1%, up to a strain of 10%. The single crystal
grains deform plastically by slip on 12 {1 1 1} ⟨1 1 0⟩ slip systems with an initial CRSS value of τ s

o = 11 MPa and a
stress exponent n = 10. Fig. 7(a) and (b) show, respectively, the von Mises stress and strain fields,
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Table 1
Phase-field simulation parameters and their normalized values for recrystallization.

Parameter Real value Normalized value
Parameter Value Parameter Value

Barrier height hb 1.14 × 106 J m−3 h∗
b = hb/E 1.14

Gain boundary energy σgb 0.82 J m−2 σ∗
gb = σgb/(E × l) 0.41

Gradient energy coefficient κ 4.0 × 10−6 J m−1 κ = κ/(E × l2) 1
Grain order interaction α, β, γ 1 α∗, β∗, γ ∗

= γ /γ 1
Kinetic Coefficient L 0.36 × 10−2 m3 J−1 s−1 L∗

= L/L 1
Grain boundary mobility Mo 1.76 × 10−14 m4 J−1 s−1 M∗

o = Mo/L · l2 2.25
Grid size 1x 1 µm 1x∗

= 1x/ l 0.5
Grain boundary width lgb 2.6 µm l∗gb = lgb/ l 1.3

Time step 1t 0.56 × 10−4 s 1t∗ = L × E × 1t 0.2

(a) von Mises stress.

(b) von Mises strain. (c) Strain–stress curve.

Fig. 7. Plastic deformation calculated by the CP-FFT model: (a) local von Mises stress field; (b) local von Mises plastic strain field; (c) global
strain–stress curve with these different hardening modulus values.

In addition, we studied the effect of strain-hardening, and four different values of the linear strain hardening modu-
lus are employed : H = 1000 MPa, H = 100 MPa and H = 0 MPa. The relatively high strain-hardening dependence
of the stress–strain curves is well captured by the model as shown in Fig. 7(c).

4.2.2. Nucleation criterion
In the second step, a simple criterion based on the site saturated nucleation conditions described in Section 2.3 is

employed to identity the nucleation site of recrystallization. The threshold value of strain in Eq. (9) is chosen as 0.1. In
order to investigate the effect of applied deformation, three different applied strains are utilized: 0.1, 0.05, and 0.025
with, respectively, 100, 50, and 25 steps of 0.1%. The hardening modulus of H = 1000 MPa is used in this step, and
throughout the rest of sections.

Fig. 8 presents the microstructure with nucleation sites, for three different applied strains. The nucleation is found
to occur at sites of high strain, as expected, which mostly correspond to the regions near the grain boundaries. In
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Fig. 8. Nucleation site under three different applied strains: 0.1, 0.05, and 0.025.

addition, it is observed that decreasing the applied strain results in a decrease of the number of nucleation sites for
recrystallization.

4.2.3. Validation of stress equilibrium
As pointed out before, the stress equation is solved during each step of temporal phase-field evolution, for which,

one fundamental issue is to verify the FFT-based solver in treating equilibrium, prior to phase-field evolution. For this
purpose, a theoretical model [48] is employed to provide the reference solutions for comparison, as

ε(x) = C−1
: σ̄ + ε̄p

+ β(εp(x) − ε̄p) (48)

where β =
2(4−5ν)
15(1−ν)

, ν is the Poisson ratio.
For simplicity, an elastically isotropic system is chosen for the simulations, although the model is applicable to

general, elastically anisotropic systems. The elastic moduli of the system are taken to be C11 = 170.2 GPa, C12 =

114.9 GPa and C44 = 61.0 GPa.
Fig. 9 compares the von Mises local elastic strain field after nucleation of recrystallization between our FFT-based

solver and the theoretical model. It is observed the results from our FFT-based solver are clearly in good agreement
with the theoretical ones, especially for the nucleation site, although a small difference is found in non-recrystallization
regions. Here, we also need to keep in mind that our focus is on the migration of grain boundaries in the recrystalliza-
tion region.

Another interesting phenomenon found in Fig. 9 is that the elastic strains are no longer negligible after nucleation
of strain-free new grains, instead, they are comparable to the plastic ones, suggesting that stress equilibrium must be
considered for each phase-field time step during recrystallization.

4.2.4. Recrystallization process
Fig. 10 shows time slices (snapshots) of the microstructure evolution during the recrystallization simulations in the

case of applied strain of 0.1. The deformed grains are shown in orange, the recrystallized grains in white, and the grain
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Fig. 9. Validation of stress equilibrium: comparison of local von Mises elastic strain field after nucleation between our FFT solver and the
theoretical model [48].

Fig. 10. Time slices of microstructure evolution during static recrystallization.

boundaries in black. Comparing Figs. 7(b) and 10, it can be seen that the recrystallized grains start to grow at sites
with relatively high plastic strain, and spread into relatively low plastic strain regions. In particular, the 2-D sections
show (a) grains in the upper left as well as in the middle right with relatively high stored energy, which are filled with
nuclei at an early stage (3000 steps), and (b) delayed recrystallization in regions of relatively low stored energy, such
as the lower left grains.
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Fig. 11. Effect of applied strain on the recrystallization kinetics and the recrystallized grain size.

4.2.5. Effect of applied strain
The effect of applied strain on recrystallization kinetics and the recrystallized grain size is investigated. The corre-

sponding results are plotted in Fig. 11. As expected, large applied plastic deformation speeds up the recrystallization
process due to the large driving forces. Moreover, a remarkable tendency towards producing more refined recrystal-
lized grains is observed as the applied strain increases. This might be related to the fact that larger applied strains
imply the generation of more recrystallization nuclei, thereby giving rise to smaller recrystallized grain size. Ani-
mations of the whole recrystallization process, including recrystallized grain nucleation and growth under different
applied plastic strains are included as Supplementary material (see Appendix A).

5. Conclusions

A new fast Fourier transform (FFT) based phase-field model (PFM) has been developed by integrating a micro-
elastic PFM and a crystal plasticity (CP) model, and applied to 3-D static recrystallization of deformed polycrystals.
The proposed model has been demonstrated by comparing the predicted recrystallization kinetics with the theoretical
Johnson–Mehl–Avrami–Kolmogorov equation. It is found that increasing the plastic pre-deformation applied to the
polycrystals accelerates the recrystallization process, and results in a decrease of recrystallized grain size.

We solved the stress equilibrium equation during each step of temporal phase-field evolution, which, to our
knowledge, has never been considered in all existing grain growth and recrystallization models. Such implementation
allows the phase-field method to simultaneously account for elastic and plastic driven forces, which have been
found to coexist and interact during the grain growth and recrystallization process. More importantly, the proposed
computational framework has the general character and is applicable to other plasticity-driven phase-field evolution
processes, e.g. crystal growth, martensitic phase transformation, and electrochemical phase transformation.

Another important advantage of the present framework is the use of FFT solver in both models, which naturally
guarantees their seamless integration. Furthermore, the intensive use of FFTs significantly enhances the computational
efficiency of the method, especially for the 3-D cases, in comparison with CP-FEM for which the number of the
elements that can be investigated is limited, i.e. far from being statistically representative, with presently available
computational resources. In contrast, the proposed method is able to yield 3-D space-resolved predictions with high
intragranular resolution, from which reliable statistical averages of kinetic and other parameters can be extracted.

Finally, of particular interest is the starting microstructure of the present method that can be either numerically-
generated, e.g. from a PFM grain growth simulation, like in the case presented here, or obtained by means of 3-D
experimental techniques. The latter would make possible to use the proposed method with a direct input from 3-D
images of materials microstructures. The experiments, in turn, could be utilized to validate the modeling results, which
is beyond the scope of this study, and will be reported in a forthcoming publication. On the disadvantage side, the
requirement of periodic boundary conditions in Fourier space makes the FFT-based formulations less general than the
FEM-base models. In addition, the small strain formulations in the CP models are not consistent with the experimental
condition having a finite strain loading, therefore, the incorporation of finite strain formulations in the CP models [49]
are necessary in the future.
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